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1 Introduction

I am a professor of Statistics and Biostatistics, University of North Carolina, Chapel Hill (UNC).
I am a member of EPA’s Science Advisory Board (SAB) and a member of a National Academies
Committee on Assessing Causality from a Multidisciplinary Evidence Base for National Ambient
Air Quality Standards. The study I report below was partially financed by an industry sponsor.
The views I express here are entirely my own views and do not reflect the opinions of UNC, the
SAB, the National Academies or the industry sponsor.

First, I would like to thank the EPA and CASAC for organizing this public comment session.
As a member of the SAB, I have often found the public comments to be very helpful in orienting
the discussion. I hope you find today’s comments similarly helpful.

2 My Study

This study [2] concerned analyzed short-term mortality associations with PMs 5 above and below
12 pg/m3 (the current long-term standard). Specific details include:

e Medicare data: ~16 million deaths, 1999-2013;

e PM; 5 data from EPA data product (the Remote Sensing information Gateway), and moni-
tors;

e Temperature and dewpoint data from NOAA (the Global Summary of Data dataset);
e Analysis by case-crossover method with 28-day comparison window;

e Concentration-response functions: linear, non-linear or “broken stick” model (two straight
lines joined at 12 ug/m3), applied to PMs 5, mean of day 0 and day 1 lags;

e Meteorological adjustment: nonlinear functions of temperature and dewpoint both current
day and average of 3 lagged days.

The results may be summarized as follows:

e Positive (statistically significant) dependence between mortality and PMsy 5 when linear C-R
function is fitted to full range or broken stick model above 12 pg/m3;
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Figure 1: Estimated percent change in mortality and 95% confidence intervals associated with 10
pg/m? rise in PMa 5 for various subpopulations and statistical models. Left group of plots: linear
concentration-response function fitted to full range of PMy 5. Middle and right groups: “broken
stick” model fitted to ranges 12-35 and 0-12 ug/m3. Top to bottom: models that include lagged
meteorology; models that exclude lagged meteorology; various sensitivity analyses.

e No significant effect below 12 ug/m3;

e But if lagged meteorology is omitted, the effects are larger across the board, and statistically
significant in all ranges;

e These results are robust across various sensitivity analyses;

e Non-linear C-R curves confirm a similar discrepancy between the results that do or do not
include lagged meteorology.

These results are illustrated in Figures 1 and 2.

3 Relevance to the ISA

There is another study that included many of the same variables. This study was highly cited in
the ISA (and the PA) [1]. This study:

e Used Medicare data from almost the same time period;
e Different constructions of PMs 5 and meteorology;

e Similar but not identical statistical and computational methodology;
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Figure 2: Nonlinear risk curves: percent change in mortality compared with a reference level of 12
pg/m3 PMy 5, with pointwise 95% confidence limits

e Included nonlinear meteorology effects for day of death, but not for lagged days;

e This study found highly statistically significant effects for PMs 5 both above and below 12
pg/m®.

I believe this study was deficient. If they had investigated the confounding effect of lagged
meteorology, they would have found the same thing as I did.

4 Discussion

This is mot about discrediting that particular group of researchers. They are a very well known
group who have made many creative contributions to air pollution epidemiology.

Rather, I believe this highlights the generic problem with all observational studies: the results
can sometimes be highly sensitive to seemingly minor changes in the statistical methodology.

For the remainder of this presentation, I want to focus on two broader issues.

4.1 Publication Bias

This paper was submitted to one of the major epidemiology journals. The referees found no
technical fault with the paper. Nevertheless, the editor rejected it. After extensive correspondence
with the editor, I felt I had no choice but to withdraw the paper. The paper is now (about to be)
resubmitted to another journal.

I do not dispute the right of journal editors to select papers for publication as they see fit, but
I believe this creates a distinct bias in the EPA assessment process.

4.2 Transparency and Reproducibility

The previous Administrator of EPA introduced a “Transparency Rule”, ostensibly to insure that
data from air pollution studies would be available for reanalysis. Numerous scientific commentators,
including his own Science Advisory Board, objected that the rule was unworkable. The rule was
reversed by the current Administrator.



Despite these developments, there has been no progress towards insuring greater reproducibility
(or replicability) in EPA studies

5 Recommendations

e EPA should establish a public database of air pollution studies that have been approved by
an IRB or equivalent body, much as exists for clinical trials.

— The results of these studies should be retained in the database, regardless of their out-
come;

— If this system had been in place, the results of my study would have been available two
years ago, and there would be no argument about their eligibility for the ISA.

e EPA should set aside funds for reanalysis of air pollution studies when appropriate, preferably
through open competition among academic researchers.

e CASAC should include “replicability” as an explicit criterion for weighting air pollution stud-
ies. For some of the papers in the ISA, it’s very hard for me to see how they could ever be
replicated.

In conclusion, I thank you for your attention.
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Abstract

Purpose: To investigate the sensitivity of short-term associations between mortality in the
Medicare population and fine particulate matter (PM) to various statistical modeling assump-
tions. Methods: Mortality data were downloaded from Medicare, particulate matter data from
EPA, temperature and dewpoint from NOAA. The case-crossover method was used to evaluate
the association between mortality and PM (average of lags 0 and 1 day) with comparison days
on the same day of week in fixed 28-day windows. Three concentration-response functions were
considered: linear, nonlinear, and a “broken stick” model hinged at 12 ug/m3. Nonlinear func-
tions of temperature and dewpoint, both on day of death and average of lags 1-3 days, were
also included. Semnsitivity analyses included age, sex and region. Results: Significant associa-
tions were found when a linear concentration response function was fitted to the full range of
PM, or in a broken-stick model above 12 ug/m3. No significant association was found below 12
pg/m3. However when lagged meteorology was omitted from the model, the estimated coeffi-
cients greatly increased and were significant at all levels of PM. Conclusions: It is important to
take lagged meteorology into account in investigating short-term associations between PM and

mortality.

1 Introduction

Over the past twenty years, there have been many papers summarizing the association between

airborne concentrations of particulate matter and mortality or other adverse health effects in the



U.S. or worldwide population. Studies may be broadly divided into two categories: those examining
short-term or acute effects, typically of duration under a week [26, 9, 23, 24, 27, 13, 8, 25, 20, 11,
33, 5, 32, 6], and those concerned with long-term effects [16, 34, 17, 2, 7, 1, 4]. Although both
short-term and long-term effects are important in a regulatory context, the present paper is solely
about short-term effects.

The United States Environmental Protection Agency (EPA) is mandated by the Clean Air Act
to promulgate air pollution standards that are “requisite to protect the public health ... allowing
an adequate margin of safety.” These standards are reviewed every five years to determine whether
they are sufficient to meet that requirement. The current EPA standard for particulate matter of
aerodynamic diameter of 2.5 um or less (PMy 5) requires an annual average of 12 pg/m3 or less and
a daily maximum of 35 pg/m? or less in each community. In practice, the daily standard is only
exceeded by a tiny minority of monitored PMy 5 readings, whereas 12 pg/m? is near the median.
Therefore, there is particular interest in understanding health effects at levels that are at or below
the level of 12 ug/m3. Evidence of a health effect in this range would strengthen the case for a
tightening of the standard.

In this paper, we focus specifically on the short-term mortality effect. Recent studies [6, 10]
have used the “case-crossover” method of statistical analysis and have suggested strong associations
between PMs 5 and short-term mortality even below 12 ug/m3. The objectives of the present paper

are to investigate:

1. Robustness of the results against alternative constructions of the meteorological and air pol-

lution databases;
2. Robustness of the results against the inclusion of alternative lags of meteorology;

3. Alternative concentration-response functions for examining the PMs s—mortality association

both above and below 12 ug/m3;

4. Regional variations in the associations.

The last of these is motivated by previous research showing strong regional variations in the ozone—
mortality association [3, 30], with effects in the north-east USA being generally stronger than

elsewhere. There has been limited research whether similar regional effects also hold for PMsy 5



(e.g. [34]), and an earlier paper on short-term mortality using data for California [32] claimed
effectively zero association between PMs s and mortality over 2000-2012 in that state. Among
other conclusions, the present paper confirms the result of [32], though all three major sources of
data (mortality, meteorology and PMs 5) have been constructed from entirely independent sources

and the method of statistical analysis is also different.

2 Data and Statistical Methods

Medicare data were obtained from the Center for Medicare and Medicaid Services for the years
1999-2013. For each deceased individual, the date of death, zipcode of residence at time of death,
age, sex and race were recorded. Meteorology data was obtained from the National Centers for
Environmental Information. For each zipcode, daily temperature and dewpoint were recorded from
the nearest weather station within 100 km. PMs 5 data were derived from both EPA monitors and
the EPA’s Remote Sensing Information Gateway, which combines information from air quality
models and monitors. Further details of both the data processing are given in Supplementary
Materials, Section 1. The exposure variable in this study is defined as the average of PMs 5 on
day of death and the one day preceding. Temperature and dewpoint data are calculated on day of
death and the mean of three days prior to death (lagged meteorology).

The statistical analysis in this paper is based on the case-crossover method [19, 18, 14, 15, 28].
Each date of death is matched with nearby “referent” dates whose air pollution and meteorology
are compared with those of the day of death. Theoretical analyses have shown the importance
of using predetermined “referent windows” and using all of the dates within a referent window to
avoid biases created by missing data. In this analysis, each date of death is matched with three
other days at seven-day intervals within a fixed window of length 28 days.

Subgroup analyses may be based on sex (separate analyses for male and female beneficiaries);
by race; by age group; and by region of country: whole US, North-East, South-East, North-West,
South-West and a separate analysis for California.

All analyses assume that the logged mortality rate is a function of temperature, dewpoint and
PMs 5. Temperature and dewpoint are both modeled nonlinearly through B-splines with varying

degrees of freedom (DF) with a default DF=6. The models for PMs 5 were (a) linear; (b) nonlinear



modeled by B-splines; or (c) the “broken stick” formula

fi(x —12) if 12 < x <= 35,
flx) = (1)

Ba(x —12) if z <= 12,
which represents the effect as two straight lines joined at x = 12. The rationale behind (1) is
that the coefficients 81 and B3 represent the PMj 5 effect over the two ranges that are of greatest
regulatory interest: (o below the long-term standard, and ;1 between the long-term and daily
standards. In this way, we hope to get a clear-cut numerical determination (with confidence limits)
of the PM, 5 effect over both of those ranges. All PMs 5 coefficients are expressed in units of percent
rise in mortality per 10 pug/m? rise in PMy 5.

With monitored PMs 5, we have 1,769,871 complete rows of data (no missing meteorology or
PMj 5 values on either the date of death or the three comparison days). This number rises to
16,196,012 using the downscaled PMs 5 data over 2002-2013. Many PMs 5 monitors only take
readings every third day which limits their use for this kind of analysis.

Summary statistics for meteorology and PMs 5 are contained in Table 1. This table shows the
minimum and maximum values along with their quantiles at the 2.5%, 25%, 50%, 75% and 97.5%
points of the distribution. These refer to day of death only and (except for the last line) the larger
dataset based on downscaled PMs 5. The rows for lagged temperature and lagged dewpoint refer to
three-day averages of daily means prior to the day of death, and are computed separately as it can
be expected that three-day averages would have a less dispersed distribution than single-day means.
For both the monitored and downscaled PMs 5 data, the calculations are for two-day averages, as
these are the values used in our epidemiological models.

Summaries of the deaths are given in Table 2, classified by sex, race, age group and region.
Overall, we have 45.9% male; 84.3% white; division among age groups is 8.4% (under 65); 20.1%
(65-74); 33.5% (75-84); 38.0% (85+); division among regions is 41.3% (North-East); 23.7% (South-
East); 9.7% (North-West); 25.4% (South-West). The total of all individuals in Table 2 is reduced
slightly by the fact that not all individuals are classified by sex and race, and the classification into
regions is restricted to those who live in the continental United States. Some additional summary
tables are given in Supplementary Materials, Section 2.

One peculiarity of the data was identified in the initial data processing: it appears that deaths



Variable Minimum | Q2.5 | Q25 | Q50 | Q75 | Q97.5 | Maximum
Daily Mean Temperature -37.3 20.3 | 4451594 | 71.9 | 85.1 109.9
Lagged Temperature —23.8 21.5 | 44.7 | 59.2 | 7T1.6 | 84.6 109.2
Daily Mean Dewpoint —45.9 7.8 |31.0|46.1 |59.2 | 73.3 86.7
Lagged Dewpoint -31.3 10.2 | 31.4 | 45.6 | 58.7 | 73.0 83.7
PMj 5 (downscaled) 0.4 39 | 7.1 | 9.8 | 13.7| 26.0 125.9
PMy 5 (from monitor) 0.0 3.8 | 7.8 | 11.2 ] 16.2 | 33.1 170.1
Table 1: Summary statistics for meteorology and PMs 5 data
Region North-East South-East North-West South-West
Race White Other White Other White Other White Other Totals
M, 0-64 | 220,942 | 85,171 147,791 | 76,134 61,631 9,569 | 144,607 | 61,747 807,592
F, 0-64 147,551 | 59,175 97,485 55,762 43,582 6,151 97,682 42,118 549,506
M, 65-74 | 568,187 | 132,750 | 362,730 | 103,372 | 153,027 | 12,388 | 381,291 | 98,365 1,812,110
F, 65-74 | 460,820 | 111,065 | 276,296 | 85,298 | 121,991 | 9,239 | 297,034 | 77,867 1,439,610
M, 75-84 | 942,349 | 140,404 | 524,946 | 102,349 | 238,628 | 13,379 | 554,919 | 126,568 || 2,643,542
F, 75-84 | 996,089 | 161,201 | 533,136 | 120,744 | 243,249 | 13,750 | 569,495 | 130,025 || 2,767,689
M, 85+ 817,465 | 79,903 | 403,062 | 62,469 | 221,147 | 8,667 | 465,838 | 87,069 | 2,145,620
F, 85+ | 1,573,412 | 169,674 | 734,133 | 137,309 | 394,689 | 13,739 | 822,217 | 141,990 || 3,987,163
Totals | 5,726,815 | 939,343 | 3,079,579 | 743,437 | 1,477,944 | 86,882 | 3,333,083 | 765,749 || 16,152,832

Table 2: Classification of Medicare deaths by sex, age group, region and race




on the last day of each month are substantially higher than on the remaining days of the month (see
Supplementary Materials, Section 3). A reviewer has pointed out that this is a known feature of
Medicare data and can be avoided by using a flag that identifies which dates of death are validated:
however, this was only pointed out after the main analyses of the paper had been completed.
Instead, the analyses used three strategies for correcting for this anomaly: (a) ignore it; (b) omit
the last day of each month; (c¢) omit the last day of each month and any days matched with the last
day of a month in the case-crossover analysis. Initial results and simulations showed that method
(b) raises significant bias issues that are similar to the phenomenon of “overlap bias” [15], so the
bulk of the following reported results used method (c).

The analysis used a Fortran program to input the data and compute the likelihood function;
maximum likelihood estimation then proceeded using a variable metric algorithm[22]. The main
limitation on this style of analysis was the number of observations that could be processed in
memory; the largest number processed in any single analysis was about 11.3 million. The dataset
consisting of all individuals aged 65 and over contains about 12.4 million individuals; this dataset
was split into male and female and the results combined using a meta-analysis approach.

The bulk of the analyses used daily deaths from 2002-2013 with PM5 5 data from RSIG; tem-
perature and dewpoint were used either with day of death only (the No Lags model) or with day
of death and the mean of the three previous days (the With Lags model). For analyses with a
log-linear relationship between PMs 5 and mortality, the range of PMs 5 was unrestricted. For the
broken stick analyses, the range was confined to 0-35 pg/m?. Because of the extra computational
cost of the broken stick analysis, not all analyses were conducted under both the log-linear and
broken stick models. Unless reported otherwise, all analyses omit the last day of each month and
any other days matched with the last day of a month under the case-crossover analysis. In addition
to analyses for the whole USA, separate analyses were performed for the North-East, South-East,
North-West, South-West and California. Some analyses divided by participants by race, classified

here as either white or non-white (other races were merged into non-white).
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Figure 1: Estimated percent change in mortality and 95% confidence intervals associated with 10

pg/m? rise in PMa 5 for various subpopulations and statistical models. Left group of plots: linear

concentration-response function fitted to full range of PMsy 5. Middle and right groups: “broken

stick” model fitted to ranges 12-35 and 0-12 pug/m3. Top to bottom: models that include lagged

meteorology; models that exclude lagged meteorology; various sensitivity analyses.




3 Results

Figure 3 shows estimates and 95% confidence intervals of the PMs s—mortality association under
numerous assumptions. The top block of six rows shows the result in different subpopulations for
our full model that includes lagged meteorology. The second block shows the same estimates for a
model that includes day-of-death meteorology but not lagged meteorology. The third block shows a
few sensitivity analyses: including the last day of month (LDOM) and all comparisons days which
were earlier omitted; using monitors instead of the RSIG to estimate PMy 5; and using 1-day and
5-day averages of lagged meteorology instead of 3-day. For models including lagged meteorology,
the regression coefficients were positive and statistically significant in the linear concentration-
response function fitted to the full range of PMy 5, and for the broken-stick model above 12 pg/m?,
but not for the broken-stick model below 12 ug/m®. When lagged meteorology was omitted, the
coefficients were larger across the board and statistically significant both above and below 12
pg/m3. The sensitivity analyses showed: including the LDOM has little effect on the results; using
monitors instead of RSIG (with correspondingly reduced data coverage) leads to substantially wider
confidence intervals, but still with the same relationship between the results with and without lagged
meteorology; using 1-day lagged meteorology does not fully account for the confounding effect while
5-day lagged meteorology produces results very similar to those for 3-day lags.

Analyses by race and by region are contained in Figure 2; these analyses were conducted only
under the log-linear model but results both excluding and including lagged meteorology are plot-
ted side by side to allow a direct comparison. For the racial comparison, the results show that
non-whites are at a higher risk than whites under both models, but with substantially wider confi-
dence intervals for non-whites reflecting the smaller overall population. For the regional analyses,
excluding the North-East, the results still show a statistically significant positive effect under the
model without lagged meteorology, but this effect disappears under the lagged meteorology model,
where none of the estimated coefficients are significantly different from zero. For the specific case
of California, the estimated linear coefficient was very close to zero, confirming a result of [32] that
was derived using entirely different data and different statistical methodology.

Figure 3 shows plots of the relative risk v. PMs 5 curve both with and without lagged meteo-

rology. This curve was computed for the 75+ age group so that the entire analysis could be fitted
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Figure 2: Analyses using the log-linear model by race and by region (other than North-East).
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Figure 3: Left curve: Nonlinear relationship between PMs 5 and mortality based on analysis without
lagged meteorology applied to Medicare enrolees aged 75+. Expressed as percent change in relative
risk to a baseline level of 12 ug/m® with pointwise 95% confidence limits. Right: Same curve but

including lagged meteorology in the statistical model.



with a single optimization. These plots have been drawn relative to a reference level of 12 ug/m?,
which seems logical because that is the current standard. Relative risks both above and below that
standard give some indication of the likely costs or benefits of changing the standard. These curves

again demonstrate the importance of taking lagged meteorology into account.

4 Discussion

The results of this paper may be compared with those of an earlier paper [6] that used similar
methodology.

In many respects, these results support and validate those of [6]. The results under the No
Lags model that are directly comparable with results in [6] show very similar point estimates
and confidence intervals. This is despite the fact that the temperature and PMy 5 components of
the data have been constructed from different sources, and there are differences in the statistical
approach as well, including an entirely different computational strategy. The mortality data are
similar but not identical, because of slightly different time periods and the end of month anomaly.
The present results show a stronger effect in women than in men; increasing effects as age increases;
and a stronger association for non-whites than for whites, though with wider confidence intervals
for non-whites reflecting differences in population size. All these results are consistent with [6].

Even in the With Lags model, the present results confirm the statistical significance of an overall
linear effect in all the national analyses and in the regional analysis for the North-East. However,
the results in the 0-12 ug/m3 range are much attenuated and not statistically significant at the
0.05 level, and the nonlinear concentration-response curve in the right hand half of Figure 3 also
implies absence of a statistically significant effect in this range.

There is no clear-cut way of saying which of the two analyses (with or without lagged meteorol-
ogy) is more appropriate. The most familiar interpretation is that lagged meteorology is acting as
a confounder of the PMy 5 effect, but this is unclear as there is no obvious mechanism at work here.
There would be a direct mechanism if lagged meteorology (along with day of death meteorology)
were a reliable predictor of PMs 5; but a direct attempt to verify this, using nonlinear splines of
both lagged and day of death meteorology as a predictor of PMjy 5, suggested an R? of only 0.14,
compared with 0.07 for predicting PMs 5 from day of death meteorology alone. Recalling the size

10



of the dataset, even these values are large enough to suggest the possibility of a confounding effect.
It is conceivable that the confounding may be the other way round, that PMs 5 is acting as a
confounder of lagged meteorology, but the statistical significance of lagged meteorology is massive
(deviances of several hundred), so any confounding effect by PMjs 5 could be no more than a very
small component of it.

The regional results mimic corresponding results for ozone [30] and are also consistent with
the previous result for California in [32]. Possible explanations include different compositions of
PMs 5 in different parts of the country and also different exposure patterns, e.g. greater use of air
conditioning in western and southern states and higher use of public transport in the North-East.
It is a matter of speculation whether the different results for California are in any way explained
by the fact that California has historically enforced its own air quality standards that are different
from the rest of the USA.

The method of this paper does not use “causal inference” techniques in the sense of for example
[21, 12, 35], but even in the absence of formal proof of causality, there are strong reasons for believing
that the effects are causal. The case-crossover method of analysis, relying on the comparison of
date of death with a set of comparison dates for the same individual, practically eliminates any
possibility of confounding by individual factors such as physical conditioning, weight, smoking
and drug use. There is a possibility of confounding by (a) other meteorological variables besides
temperature and dewpoint, and (b) other air contaminants such as certain components of PMs 5
having a stronger effect than PMs 5 itself. The former possibility has been extensively discussed
without reaching clear-cut conclusions; previous analyses such as [31, 29, 32] used specific and
relative humidity, atmospheric pressure and separate daily minimum and maximum temperatures.
As for the possibility that specific components of PMs 5 may be more strongly associated with
mortality than overall PMs 5, that remains a topic of active research, but at present, only PMs 5
itself has a national network.

Numerous caveats remain. These results apply only to short-term mortality; parallel results for
long-term mortality were published by [7]. The main part of this analysis covers only 2002-2013;
with restrictions due to nonavailability of meteorology and PMs 5 data in all zip codes, and further
deletions resulting from the last day of month artifact, the analysis dataset comprised less than

half the data potentially available from 1999-2018. If all these gaps were filled in with no change
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in the estimated coefficients, the results could be statistically significant even below 12 ug/m?3.
This paper confirms the statistical significance and likely causality of the overall association

between PMs 5 and short-term mortality, even under a lagged meteorology model. The possibility

that such effects persist to the range of PMy 5 below 12 pg/m? is by no means ruled out, but further

analyses with larger datasets would be needed to resolve this question.
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1 Further Details of Meteorological and PM,; Data

Meteorology data was obtained from the Global Summary Of the Day (GSOD) database main-
tained by the National Centers for Environmental Information, a branch of the National Oceanic
and Atmospheric Administration (NOAA). GSOD was preferred to the better known Global His-
torical Climatological Network (GHCN), because GSOD includes dewpoint whereas GHCN does
not. Although it is open to discussion whether weather station data is inherently superior to reanal-
ysis data constructions such as NCEP, we note that the NCEP grid resolution is 2.5° latitude and
longitude (roughly 270 x 210 km. at latitude 40°N), most points in the US have several weather
stations within that distance range, so the weather station data should be more sensitive to spatial
variability. The weather variables used for this study were daily mean temperature and dewpoint,
chosen so as to match the variables used in [4]. Other variables available in the database include
daily maximum and minimum temperature, precipitation and air pressure, and all of these could
potentially be included as meteorological covariates as well. [6] found that including daily maximum
and minimum temperature separately gave stronger meteorological associations than daily mean
temperature, but that possibility is not pursued here. Data were downloaded as gzipped directories

(one for each year). Each station is identified by two codes, the USAF code and the WBAN code.



A separate “isd-history” file is available, which lists the same code with other identifiers including
latitude-longitude coordinates and a country code. Only stations with a country code of “US” are
relevant to the present exercise.

To match the zip code data with weather station and air pollution monitor data, we need
latitude-longitude for each zip code and this was obtained from the file
free-zipcode-database-Primary.csv downloaded from the website
http://federalgovernmentzipcodes.us/. This dataset lists a total of 42,522 zipcodes with name
of city and state, latitude and longitude to the nearest 0.01°, and some other information. Al-
together, 23,796,902 participants out of the original 23,808,244 had zip codes whose geographic
coordinates were identifiable in this way, a coverage rate of 99.95% covering 34,553 zipcodes.

For each participant zipcode for which latitude-longitude coordinates were available, the nearest
weather station in the GSOD database was identified. Zipcodes for which the distance to the
nearest weather station was more than 100 km. were treated as missing — these included data
from noncontinental locations such as Guam, for which the distance to the nearest US weather
station was in some cases several thousand km. However, such individuals comprise only a tiny
fraction of the Medicare database, so their omission should not affect the analysis results in any
meaningful way. The choice of 100 km. as the cutoff distance is somewhat arbitrary of course,
but [4] used 50 km. for a similar cutoff with PMs 5 monitor stations — temperature fields are in
general smoother than PMs 5 fields, and it seemed reasonable to adopt twice as large a cutoff for the
meteorology variables compared with PMs 5. The remainder of the meteorology data construction
consisted of associating each zipcode with daily temperature and dewpoint data from the nearest
weather station, for all days for which these data were available.

This project uses PMs 5 data from two sources. Daily data from monitors are available on
the EPA website https://aqs.epa.gov/agsweb/airdata/download_files.html, together with
ancillary information including latitude-longitude coordinates of the monitors. This was processed
in a similar way to the meteorology data, associating each zipcode with the nearest monitor, using
a cutoff of 50 km. as previous described. This dataset was limited in two ways: first, each zipcode
that is further than 50 km. from the nearest monitor is treated as missing, and second, days where
the monitor data are missing are also treated as missing at the associated zipcode. This is a rather

significant limitation, as EPA regulations require only that PMs 5 be monitored every third day,



and the method of case-crossover analysis that we are using for the statistical analysis requires
matched PMy 5 values at multiples of seven days before and after the day of death. The conflict
between these two requirements essentially means that only monitors with daily data are usable,
which is a small proportion of the total set of monitors. Therefore, results using PMs 5 monitor
data will be extremely limited, though they are still useful for validating the results from the fused

dataset that is described next.

(a) Zipcode 27514 (b) Zipcode 60647 (c) Zipcode 12764
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Figure 1: Downscaled versus monitor plots for three zipcodes, 2002-2013. The correlation coeffi-

cients for (a)—(c) are respectively 0.98, 0.96 and 0.94.

EPA’s Remote Sensing Information Gateway, or RSIG, combines data from monitors and the
CMAQ air quality modeling product through a Bayesian approach due to [3, 1, 2]. Daily datasets
from 2002 onwards are online at the web address
https://www.epa.gov/hesc/rsig-related-downloadable-data-files. The data are at the
spatial resolution of census tracts, and include both posterior means and posterior standard devi-
ations from the Bayesian algorithm. We shall not use the standard deviations. Files identifying
census tracts with zipcodes are available from the website

https://www.huduser.gov/portal/datasets/usps_crosswalk.html. For example, zipcode 27514



(the author’s home zipcode) is identified with 14 census tracts. In this database, the largest num-
ber of census tracts in the continental US associated with a single zipcode is 53 (zipcode 60647,
Chicago, IL).

As illustrations of the agreement between these two datasets, Figure 1 shows three plots that
directly compare the downscaled and monitor data for the zipcodes of 27514 (Chapel Hill, NC),
60647 (Chicago, IL) and 12764 (Narrowsburg, NY), which was picked out because the distance
to the nearest monitor is 49.992 km., very close to our 50 km. cutoff. In all cases, the overall
agreement is good, though it appears that the downscaled PMs 5 is systematically lower than the
monitored PMy 5 in zipcode 12764, which presumably reflects the greater distance to the monitor

for this particular zipcode.

2 Proportions of subjects for which PM,; on day of death was
higher than for any of the three matched days in the case-

crossover analysis

Under the case-crossover sampling design, each date of death is matched with three other days in
the same 28-day window. If there were no association with PMs 5, the proportion for which the
day of death has the largest PMs 5, among the day of death and the three matched days, should
average out to 0.25. This proportion was computed, splitting ties at random. Overall, it comes to
0.252. Based on the sample size of nearly 16 million, this is statistically significant with a very low
p-value (z = 18.5, p ~ 1077%). Even if we restrict to the 4.9 million subjects for whom the day
of death and three matched days are all at or below 12 ug/m?3, the observed proportion is 0.251
(z = 4.92, p ~ 107%). However there are two caveats about such simplified analyses: the results
are much more variable when broken into categories by age, sex, race and region; and, they take
no account of possible meteorological confounding. Details are as follows.

For each subject, we calculate the mean PMjy 5 on the day of death and the day preceding death
(the measure of PMs 5 used throughout this paper), and then make the corresponding calculation
for each of the three matched days. If this value is not available for all four dates, the value is not
used. The proportion of subjects for whom the day of death has the largest PMs 5 among these

four days is calculated. Since PMjy 5 values are rounded to only one decimal place, there are many



ties, but these are resolved by randomly splitting the tie. Thus, if there were no association with
PMs 5, the proportion of subjects for whom PMs 5 on day of death is higher than for any of the
three comparison dates should be one quarter. Observed proportions, broken down by the same
categories as Table 2 of the main paper, are given in Table 2. Two-sided p-values are calculated
assuming binomial sampling. When the calculation is repeated only for days where all four dates

have PMy 5 values < 12ug/m3, the results are in Table 2.

Region Northeast Southeast Northwest Southwest
Race White Other | WhiteM | Other | White | Other | White | Other || Totals

M, 0-64 | 0.2522% | 0.2541° | 0.2522 0.2504 | 0.2501 | 0.2436 | 0.2526% | 0.251 0.252¢
F, 0-64 0.251 0.2531 0.2505 0.2519 | 0.2512 0.259 0.2517 | 0.2526 | 0.2516°
M, 65-74 | 0.2514% | 0.2524* | 0.2515% | 0.2531% | 0.2501 | 0.2499 | 0.2511 | 0.2515 || 0.2514¢
F, 65-74 | 0.2516% | 0.254° 0.2516 | 0.2522 | 0.2524 | 0.2461 | 0.2514 | 0.2495 || 0.2517°¢
M, 75-84 | 0.2526° | 0.2542°¢ | 0.2509 | 0.2538" | 0.253¢ 0.251 | 0.2512% | 0.2499 || 0.252¢
F, 75-84 | 0.2529¢ | 0.2537¢ | 0.2518" | 0.2531% | 0.2546° | 0.2571 | 0.2495 | 0.2514 || 0.2521¢
M, 854 | 0.2521¢ | 0.2537% | 0.253¢ 0.2527 | 0.253% | 0.2618% | 0.2504 | 0.2513 || 0.2521¢
F, 85+ | 0.2538° | 0.2534° | 0.2522¢ | 0.2527% | 0.2523% | 0.2523 | 0.2505 | 0.2491 | 0.2524°¢

Totals | 0.2527¢ | 0.2536° | 0.2518° | 0.2526¢ | 0.2526¢ | 0.2523 | 0.2507° | 0.2506 || 0.252¢

Table 1: The proportion of deaths for which PMs 5 (mean of lag 0 and lag 1) on the day of death
was higher than that on any of the three comparison days, splitting ties at random. Bottom right
hand entry (0.252) is for all categories combined; the rest of the table makes the same calculations
for various subcategorizations of the data. Superscripts indicate level of statistical significance,

based on a two-sided significance level of 0.05 (a), 0.01 (b) or 0.001 (c).

3 The “Last Day Of Month” Issue

Initial processing of the data identified an apparent anomaly, that the number of deaths on the
last day of each month is substantially higher than on the remaining days of the month. This
is illustrated in Figure 2 (plotted for 2002-2013, as these are the years for which the downscaled

PMs 5 data are available). The effect declines over time and disappears entirely during the final 1.5



Region Northeast Southeast Northwest Southwest
Race White | Other | White | Other | White | Other | White Other Totals

M, 0-64 | 0.2489 | 0.2549 | 0.2496 | 0.2467 | 0.2513 | 0.2433 | 0.2522 | 0.2495 | 0.2502
F,0-64 | 0.2484 | 0.2447 | 0.251 | 0.2547 | 0.2522 | 0.2588 | 0.252 0.2527 || 0.2512
M, 65-74 | 0.2496 | 0.2452 | 0.2517 | 0.2508 | 0.2515 | 0.246 | 0.2534° | 0.2529 || 0.2514¢
F, 65-74 | 0.2503 | 0.2458 | 0.2501 | 0.2486 | 0.2521 | 0.2419 | 0.2516 | 0.2528 || 0.2507
M, 75-84 | 0.25 | 0.2488 | 0.2488 | 0.254 | 0.2552¢ | 0.2539 | 0.2506 | 0.2502 | 0.2509
F, 75-84 | 0.2507 | 0.2535 | 0.2522% | 0.2524 | 0.2546¢ | 0.2587 | 0.2486 | 0.2543% | 0.2515°
M, 85+ | 0.2494 | 0.2443 | 0.2526% | 0.2491 | 0.2537% | 0.2601 | 0.2506 | 0.2494 | 0.2511¢
F, 854+ | 0.2494 | 0.2487 | 0.2509 0.25 0.253% | 0.2553 | 0.2506 0.248 0.2506

Totals | 0.2497 | 0.2486 | 0.251% | 0.2508 | 0.2534¢ | 0.2523 | 0.2508* | 0.2511 0.251¢

Table 2: Same as Table 2, but restricted to deaths for which the PMs 5 level on the day of death

and on all three comparisons days was less than 12 ug/m3.

years of data. A reviewer has pointed out that this is a known feature of Medicare data: deaths
without a validated date of death are assigned to the last (or sometimes first) day of the month,
and there is a flag variable in the Medpar file that identifies valid dates of death. This flag was
either missing or overlooked at the time of compiling the data for the present study. As noted in
the main paper, the anomaly was dealt with in our analysis by omitting the last day of month, and

all days paired with a last day in the case-crossover analysis, thereby eliminating the bias.

4 Further details of analytic method

For the ith individual, we have covariates x;j; representing covariates j = 1,...,5 (four weather
variables and one PMs 5 , which may be either downscaled or monitored — we shall not have
occasion to combine the two) and comparison days k = 1, ..., 4, where k = 1 represents day of death
and k = 2,3, 4 are the three comparison days (days that are either 7, 14 or 21 days before or after
date of death within the same 28-day referent window). In subsequent analysis we will replace the
individual z;;; values by expansions using B-splines to represent nonlinear effects. Assuming for

the moment that these are given, we may assume a vector of covariates x; ;, for the ith individual
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Figure 2: Number of deaths per day plotted against day since 1/1/1999. Last day of month is
plotted in red.



on the kth comparison date. The likelihood function [4, 5] is then

ﬂ exp(x},8)
i=1 Zi:l eXP(XZk:@).

Here, NV is the number of individuals and 3 represents a vector of model parameters, whicn include

L(B) =

(1)

both meteorological and PMg 5 effects. The function (1) is maximized using standard optimization
algorithms.
For the regional analyses mentioned in Section 2 of the main paper, the following definitions

are used:

1. US — the whole country

2. CA — California only

3. NE — CT,DE,IL,IN,ME,MD ,MA MI,NH,NJ,NY,OH,PA,RI,VT ,WI
4. SE — AL,AR,DC,FL,GA ,KY,LA MS,NC,SC,TN,VA)WV

5. NW — CO,IA,ID,MN,MT ,ND ,NE,OR,SD,UT,WA /WY

6. SW — AZ,CA KS,MO,NV,NM,0K, TX

References

[1] V. Berrocal, A.E. Gelfand, and D.M. Holland. A bivariate space-time downscaler under space
and time misalignment. Annals of Applied Statistics, 4:1942-1975, 2010.

[2] V. Berrocal, A.E. Gelfand, and D.M. Holland. A spatiotemporal downscaler for output from
numerical models. J. of Agricultural, Biological,and Environmental Statistics, 15:176-197, 2010.

[3] V. Berrocal, A.E. Gelfand, and D.M. Holland. Space-time fusion under error in computer model

output: an application to modeling air quality. Biometrics, 68:837-848, 2012.

[4] Qian Di, Lingzhen Dai, Yun Wang, Antonella Zanobetti, Christine Choirat, Joel D. Schwartz,
and Francesca Dominici. Association of short-term exposure to air pollution with mortality in

older adults. JAMA, 318 (24):2446-2556, 2017.



[5] L. Sheppard. Environmental epidemiology study designs. Handbook of Environmental and Eco-

logical Statistics, edited by A. Gelfand et al., Chapman and Hall/CRC' Press, Chapter 26:603—
616, 2019.

[6] S.S. Young, K. Lopiano, and R.L. Smith. Air quality and acute deaths in California, 2000-2012.
Regulatory Tozicology and Pharmacology, 88:173-184, 2017.



	CASAC-Nov-17-2021
	Smith-Medicare-PM
	Smith_Medicare_PM
	Smith_SDC


